Hill’s Criteria for
Causality

Despite philosophic criticisms of inductive inference,
inductively oriented causal criteria have commonly
been used to make such inferences. If a set of ne-
cessary and sufficient causal criteria could be used
to distinguish causal from noncausal associations
in observational studies, the job of the scientist
would be eased considerably. With such criteria,
all the concerns about the logic or lack thereof in
causal inference could be forgotten: it would only be
necessary to consult the checklist of criteria to see if
a relation were causal. We know from philosophy
that a set of sufficient criteria does not exist [3,
6]. Nevertheless, lists of causal criteria have become
popular, possibly because they seem to provide a road
map through complicated territory.

A commonly used set of criteria was proposed
by Sir Austin Bradford Hill [1]; it was an expan-
sion of a set of criteria offered previously in the
landmark Surgeon General’s report on Smoking and
Health [11], which in turn were anticipated by the
inductive canons of John Stuart Mill [5] and the
rules of causal inference given by Hume [3]. Hill
suggested that the following aspects of an associa-
tion be considered in attempting to distinguish causal
from noncausal associations: strength, consistency,
specificity, temporality, biologic gradient, plausibil-
ity, coherence, experimental evidence, and analogy.
The popular view that these criteria should be used
for causal inference makes it necessary to examine
them in detail:

Strength

Hill’s argument is essentially that strong associations
are more likely to be causal than weak associations
because, if they could be explained by some other
factor, the effect of that factor would have to be
even stronger than the observed association and there-
fore would have become evident (see Cornfield’s
Inequality). Weak associations, on the other hand,
are more easily explained by undetected biases. To
some extent this is a reasonable argument, but, as
Hill himself acknowledged, the fact that an asso-
ciation is weak does not rule out a causal con-
nection. A commonly cited counterexample is the

relation between cigarette smoking and cardiovascu-
lar disease.

Counterexamples of strong but noncausal associ-
ations are also not hard to find; any study with
strong confounding illustrates the phenomenon. For
example, consider the strong but noncausal relation
between Down syndrome and birth rank, which is
confounded by the relation between Down syndrome
and maternal age. Of course, once the confounding
factor is identified, the association is diminished by
adjustment for the factor. These examples remind
us that a strong association is neither necessary nor
sufficient for causality, nor is weakness necessary nor
sufficient for absence of causality. In addition to these
counterexamples, we have to remember that neither
relative risk nor any other measure of association is
a biologically consistent feature of an association; as
described by many authors [4, 7], it is a characteristic
of a study population that depends on the relative
prevalence of other causes. A strong association
serves only to rule out hypotheses that the association
is entirely due to one weak unmeasured confounder
or other source of modest bias.

Consistency

Consistency refers to the repeated observation of an
association in different populations under different
circumstances. Lack of consistency, however, does
not rule out a causal association, because some effects
are produced by their causes only under unusual cir-
cumstances. More precisely, the effect of a causal
agent cannot occur unless the complementary com-
ponent causes act, or have already acted, to complete
a sufficient cause. These conditions will not always
be met. Thus, transfusions can cause HIV infection
but they do not always do so: the virus must also be
present. Tampon use can cause toxic shock syndrome,
but only when other conditions are met, such as pres-
ence of certain bacteria. Consistency is apparent only
after all the relevant details of a causal mechanism are
understood, which is to say very seldom. Even stud-
ies of exactly the same phenomena can be expected
to yield different results simply because they differ
in their methods and random errors. Consistency
serves only to rule out hypotheses that the associ-
ation is attributable to some factor that varies across
studies.
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2 Hill’s Criteria for Causality

Specificity

The criterion of specificity requires that a cause leads
to a single effect, not multiple effects. This argument
has often been advanced to refute causal interpre-
tations of exposures that appear to relate to myr-
iad effects, especially by those seeking to exonerate
smoking as a cause of lung cancer. The criterion is
wholly invalid, however. Causes of a given effect
cannot be expected to lack other effects on any
logical grounds. In fact, everyday experience teaches
us repeatedly that single events or conditions may
have many effects. Smoking is an excellent example:
it leads to many effects in the smoker. The existence
of one effect does not detract from the possibility that
another effect exists. Thus, specificity does not confer
greater validity to any causal inference regarding the
exposure effect. Hill’s discussion of this criterion
for inference is replete with reservations, and many
authors regard this criterion as useless and misleading
[8, 9].

Temporality

Temporality refers to the necessity that the cause pre-
cede the effect in time. This criterion is unarguable,
insofar as any claimed observation of causation must
involve the putative cause C preceding the putative
effect D. It does not, however, follow that a reverse
time order is evidence against the hypothesis that C
can cause D. Rather, observations in which C fol-
lowed D merely shows that C could not have caused
D in these instances; they provide no evidence for or
against the hypothesis that C can cause D in those
instances in which it precedes D.

Biologic Gradient

Biologic gradient refers to the presence of a mono-
tone (unidirectional) dose-response curve. We often
expect such a monotonic relation to exist. For exam-
ple, more smoking means more carcinogen exposure
and more tissue damage, hence more carcinogenesis.
Such an expectation is not always present, however.
The somewhat controversial topic of alcohol con-
sumption and mortality is an example. Death rates
are higher among nondrinkers than among moderate
drinkers, but ascend to the highest levels for heavy
drinkers. Because modest alcohol consumption can
have beneficial effects on serum lipid profiles, such

a J-shaped dose—response curve is at least biologi-
cally plausible.

Conversely, associations that do show a monotonic
trend in disease frequency with increasing levels of
exposure are not necessarily causal; confounding can
result in a monotonic relation between a noncausal
risk factor and disease if the confounding factor
itself demonstrates a biologic gradient in its relation
with disease. The noncausal relation between birth
rank and Down syndrome mentioned above shows a
biologic gradient that merely reflects the progressive
relation between maternal age and the occurrence of
Down syndrome.

Thus the existence of a monotonic association is
neither necessary nor sufficient for a causal relation.
A nonmonotonic relation only conflicts with those
causal hypotheses specific enough to predict a mono-
tonic dose—response curve.

Plausibility

Plausibility refers to the biologic plausibility of the
hypothesis, an important concern but one that is far
from objective or absolute. Sartwell [9], emphasizing
this point, cited the remarks of Cheever, in 1861, who
was commenting on the etiology of typhus before its
mode of transmission (via body lice) was known:

It could be no more ridiculous for the stranger who
passed the night in the steerage of an emigrant ship
to ascribe the typhus, which he there contracted, to
the vermin with which bodies of the sick might be
infested. An adequate cause, one reasonable in itself,
must correct the coincidences of simple experience.

What was to Cheever an implausible explanation
turned out to be the correct explanation, since it was
indeed the vermin that caused the typhus infection.
Such is the problem with plausibility: it is too often
not based on logic or data, but only on prior beliefs.
This is not to say that biological knowledge should
be discounted when evaluating a new hypothesis,
but only to point out the difficulty in applying that
knowledge.

The Bayesian approach to inference attempts to
deal with this problem by requiring that one quan-
tify, on a probability (0 to 1) scale, the certainty that
one has in prior beliefs, as well as in new hypotheses.
This quantification displays the dogmatism or open-
mindedness of the analyst in a public fashion, with
certainty values near 1 or O betraying a strong com-
mitment of the analyst for or against a hypothesis. It
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can also provide a means of testing those quantified
beliefs against new evidence [2]. Nevertheless, the
Bayesian approach cannot transform plausibility into
an objective causal criterion.

Coherence

Taken from the Surgeon General’s report on Smok-
ing and Health [11], the term coherence implies that
a cause and effect interpretation for an association
does not conflict with what is known of the natu-
ral history and biology of the disease. The examples
Hill gave for coherence, such as the histopathologic
effect of smoking on bronchial epithelium (in refer-
ence to the association between smoking and lung
cancer) or the difference in lung cancer incidence
by sex, could reasonably be considered examples
of plausibility as well as coherence; the distinction
appears to be a fine one. Hill emphasized that the
absence of coherent information, as distinguished,
apparently, from the presence of conflicting infor-
mation, should not be taken as evidence against an
association being considered causal. On the other
hand, presence of conflicting information may indeed
undermine a hypothesis, but one must always remem-
ber that the conflicting information may be mistaken
or misinterpreted [12].

Experimental Evidence

It is not clear what Hill meant by experimental evi-
dence. It might have referred to evidence from lab-
oratory experiments on animals, or to evidence from
human experiments. Evidence from human experi-
ments, however, is seldom available for most epi-
demiologic research questions, and animal evidence
relates to different species and usually to levels
of exposure very different from those that humans
experience. From Hill’s examples, it seems that what
he had in mind for experimental evidence was the
result of removal of some harmful exposure in an
intervention or prevention program, rather than the
results of laboratory experiments [10]. The lack of
availability of such evidence would at least be a
pragmatic difficulty in making this a criterion for
inference. Logically, however, experimental evidence
is not a criterion but a test of the causal hypothesis, a
test that is simply unavailable in most epidemiologic
circumstances.

Although experimental tests can be much stronger
than other tests, they are not as decisive as often
thought, because of difficulties in interpretation. For
example, one can attempt to test the hypothesis that
malaria is caused by swamp gas by draining swamps
in some areas and not in others to see if the malaria
rates among residents are affected by the draining.
As predicted by the hypothesis, the rates will drop in
the areas where the swamps are drained. As Pop-
per emphasized, however, there are always many
alternative explanations for the outcome of every
experiment. In this example, one alternative, which
happens to be correct, is that mosquitoes are respon-
sible for malaria transmission.

Analogy

Whatever insight might be derived from analogy is
handicapped by the inventive imagination of scien-
tists who can find analogies everywhere. At best,
analogy provides a source of more elaborate hypothe-
ses about the associations under study; absence of
such analogies only reflects lack of imagination or
experience, not falsity of the hypothesis.

Conclusion

As is evident, the standards of epidemiologic evi-
dence offered by Hill are saddled with reservations
and exceptions. Hill himself was ambivalent about the
utility of these “standards” (he did not use the word
criteria in the paper). On the one hand he asked “in
what circumstances can we pass from this observed
association to a verdict of causation?” (original
emphasis). Yet, despite speaking of verdicts on cau-
sation, he disagreed that any “hard-and-fast rules of
evidence” existed by which to judge causation:

None of my nine viewpoints [criteria] can bring
indisputable evidence for or against the cause-and-
effect hypothesis and none can be required as a sine
qua non.

Actually, the fourth criterion, temporality, is a sine
qua non for causality: If the putative cause did
not precede the effect, that indeed is indisputable
evidence that the observed association is not causal
(although this evidence does not rule out causality in
other situations, for in other situations the putative
cause may precede the effect). Other than this one
condition, however, which may be viewed as part
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of the definition of causation, there is no necessary
or sufficient criterion for determining whether an
observed association is causal.
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